Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
medRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585825

RESUMO

Collagen VI-related dystrophies (COL6-RDs) manifest with a spectrum of clinical phenotypes, ranging from Ullrich congenital muscular dystrophy (UCMD), presenting with prominent congenital symptoms and characterised by progressive muscle weakness, joint contractures and respiratory insufficiency, to Bethlem muscular dystrophy, with milder symptoms typically recognised later and at times resembling a limb girdle muscular dystrophy, and intermediate phenotypes falling between UCMD and Bethlem muscular dystrophy. Despite clinical and immunohistochemical features highly suggestive of COL6-RD, some patients had remained without an identified causative variant in COL6A1, COL6A2 or COL6A3. With combined muscle RNA-sequencing and whole-genome sequencing we uncovered a recurrent, de novo deep intronic variant in intron 11 of COL6A1 (c.930+189C>T) that leads to a dominantly acting in-frame pseudoexon insertion. We subsequently identified and have characterised an international cohort of forty-four patients with this COL6A1 intron 11 causative variant, one of the most common recurrent causative variants in the collagen VI genes. Patients manifest a consistently severe phenotype characterised by a paucity of early symptoms followed by an accelerated progression to a severe form of UCMD, except for one patient with somatic mosaicism for this COL6A1 intron 11 variant who manifests a milder phenotype consistent with Bethlem muscular dystrophy. Characterisation of this individual provides a robust validation for the development of our pseudoexon skipping therapy. We have previously shown that splice-modulating antisense oligomers applied in vitro effectively decreased the abundance of the mutant pseudoexon-containing COL6A1 transcripts to levels comparable to the in vivo scenario of the somatic mosaicism shown here, indicating that this therapeutic approach carries significant translational promise for ameliorating the severe form of UCMD caused by this common recurrent COL6A1 causative variant to a Bethlem muscular dystrophy phenotype.

2.
Cells ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474342

RESUMO

The pericellular matrix (PCM) is a specialized extracellular matrix that surrounds cells. Interactions with the PCM enable the cells to sense and respond to mechanical signals, triggering a proper adaptive response. Collagen VI is a component of muscle and tendon PCM. Mutations in collagen VI genes cause a distinctive group of inherited skeletal muscle diseases, and Ullrich congenital muscular dystrophy (UCMD) is the most severe form. In addition to muscle weakness, UCMD patients show structural and functional changes of the tendon PCM. In this study, we investigated whether PCM alterations due to collagen VI mutations affect the response of tendon fibroblasts to mechanical stimulation. By taking advantage of human tendon cultures obtained from unaffected donors and from UCMD patients, we analyzed the morphological and functional properties of cellular mechanosensors. We found that the length of the primary cilia of UCMD cells was longer than that of controls. Unlike controls, in UCMD cells, both cilia prevalence and length were not recovered after mechanical stimulation. Accordingly, under the same experimental conditions, the activation of the Hedgehog signaling pathway, which is related to cilia activity, was impaired in UCMD cells. Finally, UCMD tendon cells exposed to mechanical stimuli showed altered focal adhesions, as well as impaired activation of Akt, ERK1/2, p38MAPK, and mechanoresponsive genes downstream of YAP. By exploring the response to mechanical stimulation, for the first time, our findings uncover novel unreported mechanistic aspects of the physiopathology of UCMD-derived tendon fibroblasts and point at a role for collagen VI in the modulation of mechanotransduction in tendons.


Assuntos
Colágeno Tipo VI , Mecanotransdução Celular , Distrofias Musculares , Esclerose , Humanos , Colágeno Tipo VI/genética , Proteínas Hedgehog/metabolismo , Tendões/metabolismo , Fibroblastos/metabolismo
3.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37569848

RESUMO

Pathogenetic mechanism recognition and proof-of-concept clinical trials were performed in our patients affected by collagen VI-related myopathies. This study, which included 69 patients, aimed to identify innovative clinical data to better design future trials. Among the patients, 33 had Bethlem myopathy (BM), 24 had Ullrich congenital muscular dystrophy (UCMD), 7 had an intermediate phenotype (INTM), and five had myosclerosis myopathy (MM). We obtained data on muscle strength, the degree of contracture, immunofluorescence, and genetics. In our BM group, only one third had a knee extension strength greater than 50% of the predicted value, while only one in ten showed similar retention of elbow flexion. These findings should be considered when recruiting BM patients for future trials. All the MM patients had axial and limb contractures that limited both the flexion and extension ranges of motion, and a limitation in mouth opening. The immunofluorescence analysis of collagen VI in 55 biopsies from 37 patients confirmed the correlation between collagen VI defects and the severity of the clinical phenotype. However, biopsies from the same patient or from patients with the same mutation taken at different times showed a progressive increase in protein expression with age. The new finding of the time-dependent modulation of collagen VI expression should be considered in genetic correction trials.


Assuntos
Contratura , Distrofias Musculares , Miopatias Congênitas Estruturais , Humanos , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Distrofias Musculares/metabolismo , Contratura/genética , Contratura/patologia , Mutação
4.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047652

RESUMO

Collagen VI-related myopathies are characterized by severe muscle involvement and skin involvement (keratosis pilaris and impaired healing with the development of abnormal scars, especially keloids). Scalp involvement and hair loss have not been reported among cutaneous changes associated with collagen VI mutations. The aim of this study is to describe the clinical, trichoscopic, and histological findings of the scalp changes in patients affected by COL VI mutations and to estimate their prevalence. Patients with Ullrich congenital muscular dystrophy were enrolled and underwent clinical and trichoscopic examinations and a scalp biopsy for histopathology. Five patients were enrolled, and all complained of hair loss and scalp itching. One patient showed yellow interfollicular scales with erythema and dilated, branched vessels, and the histological findings were suggestive of scalp psoriasis. Two patients presented with scarring alopecia patches on the vertex area, and they were histologically diagnosed with folliculitis decalvans. The last two patients presented with scaling and hair thinning, but they were both diagnosed with folliculitis and perifolliculitis. Ten more patients answered to a "scalp involvement questionnaire", and six of them confirmed to have or have had scalp disorders and/or itching. Scalp involvement can be associated with COL VI mutations and should be investigated.


Assuntos
Foliculite , Doenças Musculares , Humanos , Couro Cabeludo/patologia , Alopecia/genética , Alopecia/patologia , Foliculite/patologia , Colágeno , Prurido , Fenótipo
5.
Acta Neuropathol Commun ; 11(1): 48, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36945066

RESUMO

Congenital titinopathies are an emerging group of a potentially severe form of congenital myopathies caused by biallelic mutations in titin, encoding the largest existing human protein involved in the formation and stability of sarcomeres. In this study we describe a patient with a congenital myopathy characterized by multiple contractures, a rigid spine, non progressive muscular weakness, and a novel homozygous TTN pathogenic variant in a metatranscript-only exon: the c.36400A > T, p.Lys12134*. Muscle biopsies showed increased internalized nuclei, variability in fiber size, mild fibrosis, type 1 fiber predominance, and a slight increase in the number of satellite cells. RNA studies revealed the retention of intron 170 and 171 in the open reading frame, and immunoflourescence and western blot studies, a normal titin content. Single fiber functional studies showed a slight decrease in absolute maximal force and a cross-sectional area with no decreases in tension, suggesting that weakness is not sarcomere-based but due to hypotrophy. Passive properties of single fibers were not affected, but the observed increased calcium sensitivity of force generation might contribute to the contractural phenotype and rigid spine of the patient. Our findings provide evidence for a pathogenic, causative role of a metatranscript-only titin variant in a long survivor congenital titinopathy patient with distal arthrogryposis and rigid spine.


Assuntos
Músculo Esquelético , Doenças Musculares , Humanos , Conectina/genética , Conectina/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/genética , Sarcômeros/metabolismo , Fenótipo
6.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982167

RESUMO

Collagen VI exerts several functions in the tissues in which it is expressed, including mechanical roles, cytoprotective functions with the inhibition of apoptosis and oxidative damage, and the promotion of tumor growth and progression by the regulation of cell differentiation and autophagic mechanisms. Mutations in the genes encoding collagen VI main chains, COL6A1, COL6A2 and COL6A3, are responsible for a spectrum of congenital muscular disorders, namely Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM), which show a variable combination of muscle wasting and weakness, joint contractures, distal laxity, and respiratory compromise. No effective therapeutic strategy is available so far for these diseases; moreover, the effects of collagen VI mutations on other tissues is poorly investigated. The aim of this review is to outline the role of collagen VI in the musculoskeletal system and to give an update about the tissue-specific functions revealed by studies on animal models and from patients' derived samples in order to fill the knowledge gap between scientists and the clinicians who daily manage patients affected by collagen VI-related myopathies.


Assuntos
Contratura , Doenças Musculares , Distrofias Musculares , Miopatias Congênitas Estruturais , Humanos , Colágeno Tipo VI/genética , Distrofias Musculares/genética , Distrofias Musculares/patologia , Doenças Musculares/genética , Doenças Musculares/patologia , Contratura/genética , Contratura/patologia , Músculo Esquelético/patologia , Mutação , Miopatias Congênitas Estruturais/patologia
7.
Curr Gene Ther ; 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36411557

RESUMO

Duchenne and Becker muscular dystrophies are allelic X-linked recessive neuromuscular diseases affecting both skeletal and cardiac muscles. Therefore, owing to their single X chromosome, the affected boys receive pathogenic gene mutations from their unknowing carrier mothers. Current pharmacological drugs are palliative that address the symptoms of the disease rather than the genetic cause imbedded in the Dystrophin gene DNA sequence. Therefore, alternative therapies like gene drugs that could address the genetic cause of the disease at its root are crucial, which include gene transfer/implantation, exon skipping, and gene editing. Presently, it is possible through genetic reprogramming to engineer AAV vectors to deliver certain therapeutic cargos specifically to muscle or other organs regardless of their serotype. Similarly, it is possible to direct the biogenesis of exosomes to carry gene editing constituents or certain therapeutic cargos to specific tissue or cell type like brain and muscle. While autologous exosomes are immunologically inert, it is possible to camouflage AAV capsids, and lipid nanoparticles to evade the immune system recognition. In this review, we highlight current opportunities for Duchenne muscular dystrophy gene therapy, which has been known thus far as an incurable genetic disease. This article is a part of Gene Therapy of Rare Genetic Diseases thematic issue.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35162283

RESUMO

Ullrich congenital muscular dystrophy (UCMD) is a severe form of muscular dystrophy caused by the loss of function of collagen VI, a critical component of the muscle-tendon matrix. Magnetic resonance imaging of UCMD patients' muscles shows a peculiar rim of abnormal signal at the periphery of each muscle, and a relative sparing of the internal part. The mechanism/s involved in the early fat substitution of muscle fiber at the periphery of muscles remain elusive. We studied a muscle biopsy of the rectus femoris/deep fascia (DF) of a 3-year-old UCMD patient, with a homozygous mutation in the COL6A2 gene. By immunohistochemical and ultrastructural analysis, we found a marked fatty infiltration at the interface of the muscle with the epimysium/DF and an atrophic phenotype, primarily in fast-twitch fibers, which has never been reported before. An unexpected finding was the widespread increase of interstitial cells with long cytoplasmic processes, consistent with the telocyte phenotype. Our study documents for the first time in a muscle biopsy the peculiar pattern of outside-in muscle degeneration followed by fat substitution as already shown by muscle imaging, and an increase of telocytes in the interstitium of the deep fascia, which highlights a potential involvement of this structure in the pathogenesis of UCMD.


Assuntos
Distrofias Musculares , Músculo Quadríceps , Pré-Escolar , Colágeno Tipo VI/genética , Fáscia/patologia , Humanos , Músculo Esquelético , Distrofias Musculares/genética , Distrofias Musculares/patologia , Mutação , Músculo Quadríceps/patologia , Esclerose
9.
Muscle Nerve ; 64(5): 567-575, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34368974

RESUMO

INTRODUCTION/AIMS: Stromal interaction molecule 1 (STIM1) is a reticular Ca2+ sensor composed of a luminal and a cytosolic domain. Autosomal dominant mutations in STIM1 cause tubular aggregate myopathy and Stormorken syndrome or its variant York platelet syndrome. In this study we aimed to expand the features related to new variants in STIM1. METHODS: We performed a cross-sectional study of individuals harboring monoallelic STIM1 variants recruited at five tertiary centers involved in a study of inherited myopathies analyzed with a multigene-targeted panel. RESULTS: We identified seven individuals (age range, 26-57 years) harboring variants in STIM1, including five novel changes: three located in the EF-hand domain, one in the sterile α motif (SAM) domain, and one in the cytoplasmatic region of the protein. Functional evaluation of the pathogenic variants using a heterologous expression system and measuring store-operated calcium entry demonstrated their causative role and suggested a link of new variants with the clinical phenotype. Muscle contractures, found in three individuals, showed variability in body distribution and in the number of joints involved. Three patients showed cardiac and respiratory involvement. Short stature, hyposplenism, sensorineural hearing loss, hypothyroidism, and Gilbert syndrome were variably observed among the patients. Laboratory tests revealed hyperCKemia in six patients, thrombocytopenia in two patients, and hypocalcemia in one patient. Muscle biopsy showed the presence of tubular aggregates in three patients, type I fiber atrophy in one patient, and nonspecific myopathic changes in two patients. DISCUSSION: Our clinical, histological, and molecular data expand the genetic and clinical spectrum of STIM1-related diseases.


Assuntos
Transtornos Plaquetários , Miopatias Congênitas Estruturais , Transtornos Plaquetários/genética , Transtornos Plaquetários/metabolismo , Transtornos Plaquetários/patologia , Cálcio/metabolismo , Estudos Transversais , Humanos , Miose/genética , Miose/metabolismo , Miose/patologia , Miopatias Congênitas Estruturais/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
10.
Intractable Rare Dis Res ; 10(2): 75-80, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33996351

RESUMO

Scoliosis in Ullrich Congenital Muscular Dystrophy (UCMD) is very common, with a reported incidence of more than 50%, and it is rapidly progressive. There are no previous studies which specifically focus on scoliosis surgery in UCMD patients. This article reports three cases of scoliosis surgery in UCMD, focusing on operative course, clinical and radiological results achieved, fusion area and complications, with a 2-year follow-up. The surgical technique adopted for vertebral arthrodesis included: high-density pedicle screw systems, asymmetric rods contouring and direct vertebral rotation. The summary results shown a significative correction of the coronal deformity, with a reduction of the mean Cobb angle from 49° to 25° post-operatively. Mean pelvic tilt remained stable, while L5-tilt showed a decrease from 10° to 6°. Mean screw density was 1.92. None of the patients required extended fixation to S2. No major complications were reported, and patients maintained their pre-operative walking ability. All the patients reported a subjective improvement in quality of life, with a better sitting comfort. In conclusion, posterior spinal fusion with high-density pedicle screw systems and direct vertebral rotation may be safe and effective in surgical correction of scoliosis in UCMD. If pelvic obliquity and L5-tilt are less than 15°, could be possible to achieve an optimal spinal and pelvic balance even without sacral or pelvic fixation.

11.
Neuromuscul Disord ; 31(4): 336-347, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33573884

RESUMO

Non-dystrophic myotonias and periodic paralyses are a heterogeneous group of disabling diseases classified as skeletal muscle channelopathies. Their genetic characterization is essential for prognostic and therapeutic purposes; however, several genes are involved. Sanger-based sequencing of a single gene is time-consuming, often expensive; thus, we designed a next-generation sequencing panel of 56 putative candidate genes for skeletal muscle channelopathies, codifying for proteins involved in excitability, excitation-contraction coupling, and metabolism of muscle fibres. We analyzed a large cohort of 109 Italian patients with a suspect of NDM or PP by next-generation sequencing. We identified 24 patients mutated in CLCN1 gene, 15 in SCN4A, 3 in both CLCN1 and SCN4A, 1 in ATP2A1, 1 in KCNA1 and 1 in CASQ1. Eight were novel mutations: p.G395Cfs*32, p.L843P, p.V829M, p.E258E and c.1471+4delTCAAGAC in CLCN1, p.K1302R in SCN4A, p.L208P in ATP2A1 and c.280-1G>C in CASQ1 genes. This study demonstrated the utility of targeted next generation sequencing approach in molecular diagnosis of skeletal muscle channelopathies and the importance of the collaboration between clinicians and molecular geneticists and additional methods for unclear variants to make a conclusive diagnosis.


Assuntos
Canalopatias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Músculo Esquelético/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Canais de Cloreto/genética , Estudos de Coortes , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Mutação , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Paralisias Periódicas Familiares/genética , Estudos Retrospectivos , Adulto Jovem
12.
Neuromuscul Disord ; 31(1): 44-51, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33308939

RESUMO

Z-band alternatively spliced PDZ-motif protein (ZASP) is a sarcomeric component expressed both in cardiac and skeletal muscles. Mutations in the LDB3/ZASP gene cause cardiomyopathy and myofibrillar myopathy. We describe a c.76C>T / p.[Pro26Ser] mutation in the PDZ motif of LDB3/ZASP in two siblings exhibiting late-onset myopathy with axial, proximal and distal muscles involvement and marked variability in clinical severity in the absence of a significant family history for neuromuscular disorders. Notably, we identified involvement of the psoas muscle on MRI and muscle CT, a feature not previously documented. Proband's muscle biopsy showed an increase of ZASP expression by western blotting. Muscle fibres morphological features included peculiar sarcolemmal invaginations, pathological aggregates positive to ZASP, ubiquitin, p62 and LC3 antibodies, and the accumulation of autophagic vacuoles, suggesting that protein aggregate formation and autophagy are involved in this additional case of zaspopathy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Autofagia/genética , Proteínas com Domínio LIM , Agregados Proteicos/genética , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/patologia , Doenças Musculares/genética , Mutação de Sentido Incorreto , Sarcômeros
13.
Stem Cell Res Ther ; 11(1): 463, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33138863

RESUMO

BACKGROUND: Congenital muscular dystrophies (CMD) are a clinically and genetically heterogeneous group of neuromuscular disorders characterized by muscle weakness. The two most prevalent forms of CMD, collagen VI-related myopathies (COL6RM) and laminin α2 deficient CMD type 1A (MDC1A), are both caused by deficiency or dysfunction of extracellular matrix proteins. Previously, we showed that an intramuscular transplantation of human adipose-derived stem cells (ADSC) into the muscle of the Col6a1-/- mice results in efficient stem cell engraftment, migration, long-term survival, and continuous production of the collagen VI protein, suggesting the feasibility of the systemic cellular therapy for COL6RM. In order for this therapeutic approach to work however, stem cells must be efficiently targeted to the entire body musculature. Thus, the main goal of this study is to test whether muscle homing of systemically transplanted ADSC can be enhanced by employing muscle-specific chemotactic signals originating from CMD-affected muscle tissue. METHODS: Proteomic screens of chemotactic molecules were conducted in the skeletal muscles of COL6RM- and MDC1A-affected patients and CMD mouse models to define the inflammatory and immune activities, thus, providing potential markers of disease activity or treatment effect. Also using a pre-clinical animal model, recapitulating mild Ullrich congenital muscular dystrophy (UCMD), the therapeutic relevance of identified chemotactic pathways was investigated in vivo, providing a basis for future clinical investigations. RESULTS: Comprehensive proteomic screens evaluating relevant human and mouse skeletal muscle biopsies offered chemotactic axes to enhance directional migration of systemically transplanted cells into CMD-affected muscles, including CCL5-CCR1/3/5, CCL2-CCR2, CXCL1/2-CXCR1,2, and CXCL7-CXCR2. Also, the specific populations of ADSC selected with an affinity for the chemokines being released by damaged muscle showed efficient migration to injured site and presented their therapeutic effect. CONCLUSIONS: Collectively, identified molecules provided insight into the mechanisms governing directional migration and intramuscular trafficking of systemically infused stem cells, thus, permitting broad and effective application of the therapeutic adult stem cells for CMD treatment.


Assuntos
Células-Tronco Adultas , Distrofias Musculares , Animais , Quimiocinas , Humanos , Laminina , Camundongos , Músculo Esquelético , Distrofias Musculares/genética , Distrofias Musculares/terapia , Proteômica
14.
Neurology ; 95(11): e1512-e1527, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32796131

RESUMO

OBJECTIVE: To clarify the prevalence, long-term natural history, and severity determinants of SEPN1-related myopathy (SEPN1-RM), we analyzed a large international case series. METHODS: Retrospective clinical, histologic, and genetic analysis of 132 pediatric and adult patients (2-58 years) followed up for several decades. RESULTS: The clinical phenotype was marked by severe axial muscle weakness, spinal rigidity, and scoliosis (86.1%, from 8.9 ± 4 years), with relatively preserved limb strength and previously unreported ophthalmoparesis in severe cases. All patients developed respiratory failure (from 10.1±6 years), 81.7% requiring ventilation while ambulant. Histopathologically, 79 muscle biopsies showed large variability, partly determined by site of biopsy and age. Multi-minicores were the most common lesion (59.5%), often associated with mild dystrophic features and occasionally with eosinophilic inclusions. Identification of 65 SEPN1 mutations, including 32 novel ones and the first pathogenic copy number variation, unveiled exon 1 as the main mutational hotspot and revealed the first genotype-phenotype correlations, bi-allelic null mutations being significantly associated with disease severity (p = 0.017). SEPN1-RM was more severe and progressive than previously thought, leading to loss of ambulation in 10% of cases, systematic functional decline from the end of the third decade, and reduced lifespan even in mild cases. The main prognosis determinants were scoliosis/respiratory management, SEPN1 mutations, and body mass abnormalities, which correlated with disease severity. We propose a set of severity criteria, provide quantitative data for outcome identification, and establish a need for age stratification. CONCLUSION: Our results inform clinical practice, improving diagnosis and management, and represent a major breakthrough for clinical trial readiness in this not so rare disease.


Assuntos
Genótipo , Proteínas Musculares/genética , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/genética , Selenoproteínas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Musculares/patologia , Estudos Retrospectivos , Adulto Jovem
15.
Front Genet ; 11: 605, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719714

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a rare and severe X-linked muscular dystrophy in which the standard of care with variable outcome, also due to different drug response, is chronic off-label treatment with corticosteroids (CS). In order to search for SNP biomarkers for corticosteroid responsiveness, we genotyped variants across 205 DMD-related genes in patients with differential response to steroid treatment. METHODS AND FINDINGS: We enrolled a total of 228 DMD patients with identified dystrophin mutations, 78 of these patients have been under corticosteroid treatment for at least 5 years. DMD patients were defined as high responders (HR) if they had maintained the ability to walk after 15 years of age and low responders (LR) for those who had lost ambulation before the age of 10 despite corticosteroid therapy. Based on interactome mapping, we prioritized 205 genes and sequenced them in 21 DMD patients (discovery cohort or DiC = 21). We identified 43 SNPs that discriminate between HR and LR. Discriminant Analysis of Principal Components (DAPC) prioritized 2 response-associated SNPs in the TNFRSF10A gene. Validation of this genotype was done in two additional larger cohorts composed of 46 DMD patients on corticosteroid therapy (validation cohorts or VaC1), and 150 non ambulant DMD patients and never treated with corticosteroids (VaC2). SNP analysis in all validation cohorts (N = 207) showed that the CT haplotype is significantly associated with HR DMDs confirming the discovery results. CONCLUSION: We have shown that TNFRSF10A CT haplotype correlates with corticosteroid response in DMD patients and propose it as an exploratory CS response biomarker.

16.
Front Genet ; 11: 131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194622

RESUMO

Dystrophinopathies are inherited diseases caused by mutations in the dystrophin (DMD) gene for which testing is mandatory for genetic diagnosis, reproductive choices and eligibility for personalized trials. We genotyped the DMD gene in our Italian cohort of 1902 patients (BMD n = 740, 39%; DMD n =1162, 61%) within a nationwide study involving 11 diagnostic centers in a 10-year window (2008-2017). In DMD patients, we found deletions in 57%, duplications in 11% and small mutations in 32%. In BMD, we found deletions in 78%, duplications in 9% and small mutations in 13%. In BMD, there are a higher number of deletions, and small mutations are more frequent than duplications. Among small mutations that are generally frequent in both phenotypes, 44% of DMD and 36% of BMD are nonsense, thus, eligible for stop codon read-through therapy; 63% of all out-of-frame deletions are eligible for single exon skipping. Patients were also assigned to Italian regions and showed interesting regional differences in mutation distribution. The full genetic characterization in this large, nationwide cohort has allowed us to draw several correlations between DMD/BMD genotype landscapes and mutation frequency, mutation types, mutation locations along the gene, exon/intron architecture, and relevant protein domain, with effects on population genetic characteristics and new personalized therapies.

17.
Cells ; 9(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053901

RESUMO

Mutations in collagen VI genes cause two major clinical myopathies, Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD), and the rarer myosclerosis myopathy. In addition to congenital muscle weakness, patients affected by collagen VI-related myopathies show axial and proximal joint contractures, and distal joint hypermobility, which suggest the involvement of tendon function. To gain further insight into the role of collagen VI in human tendon structure and function, we performed ultrastructural, biochemical, and RT-PCR analysis on tendon biopsies and on cell cultures derived from two patients affected with BM and UCMD. In vitro studies revealed striking alterations in the collagen VI network, associated with disruption of the collagen VI-NG2 (Collagen VI-neural/glial antigen 2) axis and defects in cell polarization and migration. The organization of extracellular matrix (ECM) components, as regards collagens I and XII, was also affected, along with an increase in the active form of metalloproteinase 2 (MMP2). In agreement with the in vitro alterations, tendon biopsies from collagen VI-related myopathy patients displayed striking changes in collagen fibril morphology and cell death. These data point to a critical role of collagen VI in tendon matrix organization and cell behavior. The remodeling of the tendon matrix may contribute to the muscle dysfunction observed in BM and UCMD patients.


Assuntos
Colágeno Tipo VI/genética , Contratura/genética , Metaloproteinase 2 da Matriz/genética , Distrofias Musculares/congênito , Esclerose/genética , Antígenos/genética , Biópsia , Polaridade Celular/genética , Contratura/diagnóstico por imagem , Contratura/patologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Distrofias Musculares/diagnóstico por imagem , Distrofias Musculares/genética , Distrofias Musculares/patologia , Mutação/genética , Proteoglicanas/genética , Esclerose/diagnóstico por imagem , Esclerose/patologia , Tendões/diagnóstico por imagem , Tendões/patologia , Tendões/ultraestrutura
18.
Acta Myol ; 39(4): 200-206, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33458575

RESUMO

OBJECTIVES: In Duchenne muscular dystrophy, quadriceps weakness is recognized as a key factor in gait deterioration. The objective of this work was three-fold: first, to document the strength of the quadriceps in corticosteroid-naïve DMD boys; second, to measure the effect of corticosteroids on quadriceps strength; and third, to evaluate the correlation between baseline quadriceps strength and the age when starting corticosteroids with the loss of ambulation. METHODS: Quadriceps muscle strength using hand-held dynamometry was measured in 12 ambulant DMD boys who had never taken corticosteroids and during corticosteroid treatment until the loss of ambulation. RESULTS: Baseline quadriceps muscle strength at 6 years of age was 28% that of normal children of the same age; it decreased to 15% at 8 years and to 6% at 10 years. The increase in quadriceps muscle strength obtained after 1 year of corticosteroid treatment had a strong direct correlation with the baseline strength (R = 0.96). With corticosteroid treatment, the age of ambulation loss showed a very strong direct relationship (R = 0.92) with baseline quadriceps muscle strength but only a very weak inverse relationship (R = -0.73) with the age of starting treatment. Age of loss of ambulation was 10.3 ± 0.5 vs 19.1 ± 4.7 (P < 0.05) in children with baseline quadriceps muscle strength less than or greater than 40 N, respectively. CONCLUSIONS: Corticosteroid-naïve DMD boys have a quantifiable severe progressive quadriceps weakness. This long-term study, for the first time, shows that both of the positive effects obtained with CS treatment, i.e. increasing quadriceps strength and delaying the loss of ambulation, have a strong and direct correlation with baseline quadriceps muscle strength. As such, hand-held dynamometry may be a useful tool in the routine physical examination and during clinical trial assessment.


Assuntos
Glucocorticoides/uso terapêutico , Força Muscular/efeitos dos fármacos , Distrofia Muscular de Duchenne/fisiopatologia , Prednisona/uso terapêutico , Pregnenodionas/uso terapêutico , Músculo Quadríceps/efeitos dos fármacos , Adolescente , Fatores Etários , Anti-Inflamatórios/uso terapêutico , Criança , Pré-Escolar , Esquema de Medicação , Humanos , Masculino , Dinamômetro de Força Muscular , Distrofia Muscular de Duchenne/tratamento farmacológico , Músculo Quadríceps/fisiopatologia , Caminhada , Adulto Jovem
19.
Skelet Muscle ; 9(1): 14, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133047

RESUMO

BACKGROUND: Myopalladin (MYPN) is a component of the sarcomere that tethers nebulin in skeletal muscle and nebulette in cardiac muscle to alpha-actinin at the Z lines. Autosomal dominant MYPN mutations cause hypertrophic, dilated, or restrictive cardiomyopathy. Autosomal recessive MYPN mutations have been reported in only six families showing a mildly progressive nemaline or cap myopathy with cardiomyopathy in some patients. CASE PRESENTATION: A consanguineous family with congenital to adult-onset muscle weakness and hanging big toe was reported. Muscle biopsy showed minimal changes with internal nuclei, type 1 fiber predominance, and ultrastructural defects of Z line. Muscle CT imaging showed marked hypodensity of the sartorius bilaterally and MRI scattered abnormal high-intensity areas in the internal tongue muscle and in the posterior cervical muscles. Cardiac involvement was demonstrated by magnetic resonance imaging and late gadolinium enhancement. Whole exome sequencing analysis identified a homozygous loss of function single nucleotide deletion in the exon 11 of the MYPN gene in two siblings. Full-length MYPN protein was undetectable on immunoblotting, and on immunofluorescence, its localization at the Z line was missed. CONCLUSIONS: This report extends the phenotypic spectrum of recessive MYPN-related myopathies showing: (1) the two patients had hanging big toe and the oldest one developed spine and hand contractures, none of these signs observed in the previously reported patients, (2) specific ultrastructural changes consisting in Z line fragmentation, but (3) no nemaline or caps on muscle pathology.


Assuntos
Proteínas Musculares/deficiência , Proteínas Musculares/genética , Miotonia Congênita/genética , Adulto , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Consanguinidade , Éxons , Feminino , Genes Recessivos , Homozigoto , Humanos , Mutação com Perda de Função , Masculino , Microscopia Eletrônica de Transmissão , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Miotonia Congênita/diagnóstico por imagem , Miotonia Congênita/fisiopatologia , Linhagem , Deleção de Sequência , Dedos do Pé/diagnóstico por imagem
20.
Pharmacol Res ; 125(Pt B): 122-131, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28899790

RESUMO

Duchenne muscular dystrophy (DMD) is a severe muscle disease of known etiology without effective, or generally applicable therapy. Mitochondria are affected by the disease in animal models but whether mitochondrial dysfunction is part of the pathogenesis in patients remains unclear. We show that primary cultures obtained from muscle biopsies of DMD patients display a decrease of the respiratory reserve, a consequence of inappropriate opening of the permeability transition pore (PTP). Treatment with the cyclophilin inhibitor alisporivir - a cyclosporin A derivative that desensitizes the PTP but does not inhibit calcineurin - largely restored the maximal respiratory capacity without affecting basal oxygen consumption in cells from patients, thus reinstating a normal respiratory reserve. Treatment with alisporivir, but not with cyclosporin A, led to a substantial recovery of respiratory function matching improved muscle ultrastructure and survival of sapje zebrafish, a severe model of DMD where muscle defects are close to those of DMD patients. Alisporivir was generally well tolerated in HCV patients and could be used for the treatment of DMD.


Assuntos
Ciclosporina/farmacologia , Mitocôndrias/efeitos dos fármacos , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animais , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Ciclosporina/uso terapêutico , Modelos Animais de Doenças , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Células Musculares/fisiologia , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular de Duchenne/tratamento farmacológico , Consumo de Oxigênio/efeitos dos fármacos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...